1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
| import torch from dataclasses import dataclass @dataclass class TrainingConfig: image_size = 128 train_batch_size = 16 eval_batch_size = 16 num_epochs = 50 gradient_accumulation_steps = 1 learning_rate = 1e-4 lr_warmup_steps = 500 save_image_epochs = 10 save_model_epochs = 30 mixed_precision = "fp16" output_dir = "ddpm-butterflies-128"
push_to_hub = True hub_model_id = "<your-username>/<my-awesome-model>" hub_private_repo = False overwrite_output_dir = True seed = 0 config = TrainingConfig()
from datasets import load_dataset config.dataset_name = "huggan/smithsonian_butterflies_subset" dataset = load_dataset(config.dataset_name, split="train")
import matplotlib.pyplot as plt fig, axs = plt.subplots(1, 4, figsize=(16, 4)) for i, image in enumerate(dataset[:4]["image"]): axs[i].imshow(image) axs[i].set_axis_off() fig.show() from torchvision import transforms preprocess = transforms.Compose( [ transforms.Resize((config.image_size, config.image_size)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] )
def transform(examples): images = [preprocess(image.convert("RGB")) for image in examples["image"]] return {"images": images} dataset.set_transform(transform)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True) from diffusers import UNet2DModel model = UNet2DModel( sample_size=config.image_size, in_channels=3, out_channels=3, layers_per_block=2, block_out_channels=(128, 128, 256, 256, 512, 512), down_block_types=( "DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D", ), up_block_types=( "UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", ), )
from diffusers.optimization import get_cosine_schedule_with_warmup optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate) lr_scheduler = get_cosine_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=config.lr_warmup_steps, num_training_steps=(len(train_dataloader) * config.num_epochs), )
from diffusers import DDPMScheduler noise_scheduler = DDPMScheduler(num_train_timesteps=1000) noise = torch.randn(sample_image.shape) timesteps = torch.LongTensor([50]) noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps) Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0]) noise_pred = model(noisy_image, timesteps).sample loss = F.mse_loss(noise_pred, noise) import os from diffusers import DDPMPipeline from diffusers.utils import make_image_grid
def evaluate(config, epoch, pipeline): images = pipeline( batch_size=config.eval_batch_size, generator=torch.manual_seed(config.seed), ).images
image_grid = make_image_grid(images, rows=4, cols=4)
test_dir = os.path.join(config.output_dir, "samples") os.makedirs(test_dir, exist_ok=True) image_grid.save(f"{test_dir}/{epoch:04d}.png") import os from pathlib import Path from tqdm.auto import tqdm from accelerate import Accelerator from huggingface_hub import create_repo, upload_folder def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler): accelerator = Accelerator( mixed_precision=config.mixed_precision, gradient_accumulation_steps=config.gradient_accumulation_steps, log_with="tensorboard", project_dir=os.path.join(config.output_dir, "logs"), ) if accelerator.is_main_process: if config.output_dir is not None: os.makedirs(config.output_dir, exist_ok=True) if config.push_to_hub: repo_id = create_repo( repo_id=config.hub_model_id or Path(config.output_dir).name, exist_ok=True ).repo_id accelerator.init_trackers("train_example")
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler )
global_step = 0
for epoch in range(config.num_epochs): for step, batch in enumerate(train_dataloader): clean_images = batch["images"] noise = torch.randn(clean_images.shape, device=clean_images.device) bs = clean_images.shape[0]
timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device, dtype=torch.int64 )
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model): noise_pred = model(noisy_images, timesteps, return_dict=False)[0] loss = F.mse_loss(noise_pred, noise) accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad()
if accelerator.is_main_process: pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)
if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1: evaluate(config, epoch, pipeline) if config.push_to_hub: upload_folder( repo_id=repo_id, folder_path=config.output_dir, commit_message=f"Epoch {epoch}", ignore_patterns=["step_*", "epoch_*"], ) else: pipeline.save_pretrained(config.output_dir) from accelerate import notebook_launcher args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler) notebook_launcher(train_loop, args, num_processes=1)
import glob sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png")) Image.open(sample_images[-1])
|